5 research outputs found

    Towards accurate simulations of programmable dataplanes

    No full text

    Provision of Training for the IT Industry: The ELEVATE Project

    No full text
    Abstract. This paper will present ELEVATE that aims to deliver an innovative training, educational and certification environment integrating the application software to be taught with the training procedure. ELEVATE aspires to address the training needs of software development SMEs and the solution proposed is based on three basic notions: to provide competence training that is tailored to the needs of the individual trainee, to allow the trainee to carry out authentic activities as well as problem based learning that draws from real life scenarios and finally to allow for the assessment and certification of the skills and competences acquired. In order to achieve the desired results the ELEVATE architecture utilises an Interactive Interoperability Layer, an Intelligent Personalization Trainer as well as the Training, Evaluation & Certification component. As an end product, the ELEVATE project The ELEVATE pedagogical model is based on blended learning, the e-Training component (an intelligent system that provides tailored training) and Learning 2.0

    Optimal mapping of inferior olive neuron simulations on the Single-Chip Cloud Computer

    No full text
    Biologically accurate neuron simulations are increasingly important in research related to brain activity. They are computationally intensive and feature data and task parallelism. In this paper, we present a case study for the mapping of a biologically accurate inferior-olive (InfOli), neural cell simulator on an many-core research platform. The Single-Chip Cloud Computer (SCC) is an experimental processor created by Intel Labs. The target neurons provide a major input to the cerebellum and are involved in motor skills and space perception. We exploit task-and data-partitioning, scaling the simulation over more than 40,000 neurons. The voltage-and frequency-scaling capabilities of the chip are explored, achieving more than 20% energy savings with negligible performance degradation. Four platform configurations are evaluated and a mapping with balanced workload and constant voltage and frequency is formally derived as optimal
    corecore